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Abstract. We investigate the &clination unbinding transition from the theoretically pre- 
dicted hexatic N + 6 phase to the nematic phase in discotic liquid crystals. The free energy 
duetoanequilibriumcontinuousdensityofdisclinationsinthehexaticN + 6phase isderived. 
Two kindsof disclinations are considered, longitudinal wedge and twist disclinations, which 
decorrelate the sixfold orientational order, but do not break the cylindrical nematic order 
around the director. Two possible mechanisms for the transition are found. The longitudinal 
wedge free energy drives a transition of Kosterlitz type, which is the three-dimensional 
equivalent of the disclination unbinding transition in two-dimensional melting theory of 
Halperin and Nelson. Twist disciinations provide a different mechanism for the transition, 
which is peculiar to the hexatic phase as a quasi-two-dimensional system. The hvist dis- 
clination free energy is not positive definite for some ranges of values of the Frank elastic 
constants. As a consequence, for strong coupling between the director distortions and the 
torsions around the axis of sixfold symmetry, a disclinati(in unbindinginslability, essentially 
due to repulsion between disclinations of opposite signs. develops in the system. In order to 
decide which of these two mechanisms is effective, we should know the physical values of 
the Frankconstantsin the hexaticphase. 

1. Introduction 

Recently there has been considerable interest in bond orientationally ordered phases 
[l-31 as intermediates between a fully disordered phase and a phase that is both orien- 
tationally and translationally ordered. For most of these phases there is as yet no 
experimental evidence, but they are at least possible on symmetry grounds and are of 
physical interest. They should be a universal feature of ordered media and have been 
proposed in a wide class of systems, including various kinds of liquid crystals, which 
show similar symmetry features despite different physical structures 131. Stability against 
Euctuations of long-range orientational order is crucial for the actual existence of such 
new phases. Fluctuation-induced instability might be the reason why experimental 
observation of these phases is very difficult. 

As regards discotic liquid crystals, we proposed a model for the melting of the 
hexagonal discotic phase into the nematic phase [4, 51, where we assumed an inter- 
mediate hexaric N + 6 phase [2, 41, which is still experimentally undiscovered. The 
hexatic phase is translationally invariant and therefore has homogeneous density like 
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the ordinary nematic phase, but shows long-range sixfold orientational order around 
the director like the hexagonal discotic phase. The elastic stability of the N + 6 phase 
against fluctuation-induced breaking of long-range orientational order has been tested 
in a recent work [6].  

We assumed such an intermediate phase because of some analogies with the two- 
dimensional melting theory of Halperin and Nelson [7]. As discussed in [4]. the hex- 
agonal discotic phase is a quasi-two-dimensional system consisting of an array of liquid 
columns parallel to each other and the axes of which are regularly positioned on a two- 
dimensional hexagonal lattice. The liquid-like behaviour along the columns stabilizes 
the two-dimensional lattice against thermal fluctuations. 

In the previous works [4,5], we considered the melting of the hexagonal discotic 
phaseinto the hexaticN +6phase,presentingalsoadefect model [8,9]ofthistransition. 
Therefore we only dealt with the breaking of translational order. At such a transition 
the two-dimensional lattice of the hexagonal discotic phase is completely melted so that 
the hexatic phase, like an ordinary liquid, does not show resistance to shear. The 
orientational order, on the contrary, is maintained: the hexatic phase presents the same 
sixfold orientational order around the director as the hexagonal discotic phase, while 
the ordinary nematic phase shows cylindrical symmetry. 

In the Halperin-Nelson theory of two-dimensional melting [7], two kinds of defects 
are considered: dislocations as defectsof translational order and disclinations as defects 
of orientational order. Two second-order phase transitions are found. A transition, 
mediated by dissociation of dislocation-antidislocation pairs, occursfrom the solid phase 
to an intermediate hexatic phase. which is translationally disordered but orientationally 
ordered. Another transition. mediated by unbinding of disclination-antidisclination 
pairs, takes place from the hexatic phase to the isotropic liquid phase. Such defect- 
mediated transitions have been extensively treated in several systems [l, 7.10-121. 

The present paper is devoted to developing a defect theory of the transition between 
the hexatic N + 6 phase and the nematic phase in discotic liquid crystals. The loss of 
orientational order is due to disclination unbinding, as in the Halperin-Nelson theory 
[7]. Weshallconsider the hexatic phase permeated by an equilibriumcontinuousdensity 
of unbound disclination loops. which decorrelate the sixfold orientational order and 
let the cylindrical order, typical of the nematic phase, alone. The derivation of the 
disclination free energy is somehow similar to that employed, in the dislocation 
unbinding transition, for obtaining the dislocation free energy [I. 8,9]. 

The main result of this analysis is a new mechanism for the disclination unbinding 
transition, peculiar to the hexatic phase as a quasi-two-dimensional system. Normal 
stability of long-range orientational order requires some conditions on the Frank elastic 
constants [6 ] .  Such a stability analysis involves long-wavelength non-singular fluc- 
tuations with respect to the uniform configuration. Disclinations, on the contrary, are 
non-homogeneous equilibrium configurations of the ordered medium which are singular 
along a line. The analysis of disclination energy imposes stronger conditions on the 
Frankconstants. Therefore. the stability conditionsagainst disclination unbindingcan be 
violated even if the system is stable as regards non-singular fluctuations of orientational 
order. 

The disclinations in the hexatic N + 6 phase are the same as in the hexagonal 
discotic phase, since these two phases share the same orientational symmetry. Beyond 
disclinations typical of a two-dimensional solid, like the so-called longitudinal wedge 
disclinations [13], there are the transverse wedge and twist disclinations [13], in which 
the modes of distortion of the nematic director are coupled to the strains of the two- 
dimensional lattice. 
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The hexatic phase is melted as regards the two-dimensional lattice, but it maintains 
avestige of the singled out crystallographic axes in the hexagonal anisotropy. Therefore 
the nematic director is no longer sufficient to fix orientational order. We are forced to 
introduce a bond-angle field Qz, which gives the orientation of the local two-dimensional 
lattice in the plane orthogonal to the unperturbed nematic director mo, which is con- 
ventionally taken along the i axis. Such Qz can be defined as the rotation angle around 
the nematic director m, between a given reciprocal lattice vector and a fixed P axis. In 
the hexatic phase there are no reciprocal lattice vectors, but only the ‘directions’ of such 
vectors, i.e. the crystallographic axes. 

The full orientational order of the hexatic phase is therefore determined by the local 
rotation field a, which is defined as [4] 

0. = Qzm, + (mo x 6m) (1) 
where Q, is the local rotation of the two-dimensional lattice around mo, while 6m is a 
small distortion of the unperturbed nematic director mP The field fi locally &xes the 
orientation of the hexatic phase with respect to the uniform configuration in which Qz 
and 6m vanish. 

The longitudinal wedge disclinations [13] are characterized by 6m = 0 and only Qz 

is distorted (solid-like disclinations). In the transverse wedge and twist disclinations 
[13], on the contrary, the director distortions 6m and the rotation strains of Q, are both 
involved. Longitudinal wedge disclination lines are straight lines along m,, while twist 
disclination lines lie along a direction orthogonal to mu. Both these kinds of disclinations 
are lines of singularities of the Qz component of a. Transverse wedge disclination lines, 
on the contrary, are orthogonal to mo and are lines of singularities of a component of a 
orthogonal to mo. 

In the disclination unbinding transition from the hexatic N + 6 phase to the nematic 
phase only the longitudinal wedge and twist disclinations [I31 play a role. In fact, the 
transverse wedge disclinations are characterized by large deformations of the nematic 
director [13], which undergoes a JC rotation. In that way the transverse wedge dis- 
clinations would break the cylindrical nematic order too, making the system isotropic. 
Searching for the transition to the nematic phase, we therefore only consider the 
longitudinal wedge and twist disclinations. In those kinds of disclinations, the per- 
turbationsoftheorientationalorder,SmandQ,, aresmalloutside the disclinationcores, 
so that they preserve mo as the average nematic director and then the nematic order 
(figures 1 and 2). Thus equation (l), which assumes Qz and 6m as small perturbations, 
makes sense in a perturbative approximation. 

We shall derive the free energy due to an equilibrium density of disclinations in 
the hexdtic N + 6 phase. The disclination density will be defined by considering the 
disclination lines as lines of topological singularities of the rotation field Cl. Since, as 
discussed above, we only deal with longitudinal wedge and twist disclinations, we will 
focus on Qz singularities. The curvature strains due to a finite density of disclinations, 
inserted in the Frank elastic energy of the hexatic phase previously obtained [SI, give 
the disclination free energy. We then impose the equilibrium conditions to the elastic 
stresses yielded by disclinations, assuming an equilibrium continuous density of dis- 
clinations. 

In fact, near the transition temperature, the system should contain a large number 
of unbound disclination loops of arbitrary size. Thus, the density of disclinations, in this 
limit, can be considered a continuous field. Finally, we get the free energy of the hexatic 
N + 6 phase permeated by an equilibrium continuous density of disclinations. 
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Figurel. Longitudinal wedgedisclinationsof(n) +n/3and(b) -n/3ofthe planarhexagonal 
array of liquid colums. The tangent vector I of the singular core line is parallel to the 
director mu. Each circle represents the section of a liquid column in the plane orthogonal to 
m,, which remainsundistorted (two-dimensional solid-like dkclinations). Only the Q, angle 
of local orientationofthe two-dimensional lattice undergoesdistortions: the vector between 
two nearest neighbours rotates by (e) +n/3 and (6) -n/3 along any loop around the 
disclination core. As a consequence, the core sit- of +n/3 and -n/3 disclinations are 
surrounded by five and seven nearest neighbours, respectively, while for every other site the 
number of nearest neighbours is six, as in a regular hexagonal lattice. The orientational 
configurations induced by disclinations in the hexatic phase are the same as in the hexagonal 
discotic phase to which the figures are referred, since the two phases share the Same 
orientational symmetry. 

Figure2.Twirtdisclinationof +n/3.The tangent 
vectori of the dirclination core line is orthogonal 
to the unperturbed director m,,. For the sake of 
simplicity. the rotation is confined to a unique 
edge of the frame. Actually, i f  the elastic Stresses 
are relaxed, the configuration of the rotation dis- 
tortions spreads all over the plane orthogonal to 
the disclinationline (seesection 4). Each 'vertical' 
line represents a liquid column, while the 'hori- 
zontal' lines are the links of planar lattices. The 
twist disclination line is a line of singulanties of 
the only 9, angle. However, it yields distortions 
of the director bm. as well as Q, rotations of the 
local two-dimensional lattice, so that the liquid 
columns are just twisted. In this sense the twist 
disclination is typical of our quasi-lwo-dimen- 
sional system. Also this figure is referred to the 
hexagonal dimtic phase. but the orientational 
configuration is thesame~as inthe hexatic phase. 

The contribution of longitudinal wedge disclinations to the above-mentioned free 
energy is completely similar to the free energy that drives the disclination unbinding 
transition in two-dimensional melting [7], since the longitudinal wedge disclinations are 
solid-like disclinations. Therefore, as regards longitudinal wedge disclinations, the 
transition should be of Kosterlitz type [lo, 111. 
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However, we have to consider also the contribution due to twist disclinations, which 
are not solid-like. The twist disclination free energy is no1 positive definite for some 
ranges of values of the Frank elastic constants, which still fulfil the elastic stability 
conditions [6]. As aconsequence, the interaction between disclinationsof opposite signs 
can become repulsive, so yielding a twist disclination unbinding transition as a new type 
of phase transition. 

At present, without direct knowledge of the ranges of values of physical parameters 
in the hexatic N + 6 phase, we are not able to state which of the two mechanisms 
describedabove iseffective. We onlyconclude that thereisthe possibilityofadisclination 
unbinding transition peculiar to the hexatic N + 6 phase as a quasi-two-dimensional 
system. 

In section 2 we define the disclination density field. In section 3 we derive the 
disclination free energy, which drives the disclination unbinding transition from the 
hexaticN + 6phase into thenematicphase. Insection4wecalculate the pair-interaction 
energy between disclinations and the deformations due to an isolated disclination. 
Finally, in the appendix, we explicitly calculate the interaction energy of twist discli- 
nations. 

2. Disclination density in the hexatic N + 6 phase 

Disclination lines in the hexatic phase are topological singularities of the rotation field 
a (equation (1)) characterized by a non-vanishing contour integral of 0 around such a 
line. We only consider 51, singularities, and then longitudinal wedge and twist discli- 
nations, since only thiskindofsingularity iseffectivein the disclination-mediated hexatic 
N + 6 phase to nematic phase transition. Thus our disclination lines are characterized 
by 

$ d51, = ZT(n/6) (2) 

where the contour integral is made along any loop around such a line, and n = k 1, +2, 
e 3  is an integer measure of the disclinicity of the line [7,13]. In equation (2), n can take 
only theinteger values +l, t 2 ,  +3 inorder to preservelocally the.hexagonalsymmetry. 

Disclinations can be viewed as linear defects of orientational order, i.e. non-homo- 
geneous equilibrium configurations of the ordered medium that are singular along a 
line. In section 4 we will compute the configuration of il around such a singular line. A 
non-homogeneous configuration is characterized by a non-vanishing curvature strain 
tensor 

A ,  = aAi/axi (3) 

(4) 

where the vector A is defined as 

A, = 51, A ,  = am, = QY A Y = 6m Y = -51,. 
Equation (2) can be written in terms of the curvature strain tensor as 

$ Ai, clxk = 2n(n/6). ( 5 )  

The followingisin fullanalogy withdislocation theory[l, 141. Theapplicationof Stokes’ 
theorem to equation (5 )  gives the differential version of (2), 

where 6(z)(6) is a two-dimensional 6 function of the radius vector 6 taken from the axis 
Erik a A k Z / a X ,  = Wn/6)2,6(*)(6) (6) 



1654 C Giannessi 

of the disclination line in a plane orthogonal to the tangent vector 7 .  For longitudinal 
wedge disclinations I is along the unperturbed nematic director mo (1 axis), while for 
twist dischations I is orthogonal to mo 1131. 

For an arbitrary number of disclinations, one can define the disclination density 

a = 2n 2 (n,/6)6”)(5 - ~ , J T .  (7) 

ai = E , ~ ~  aAkz/ax,. (8) 

C . a = O  (9) 

and then, by equation (6). 

The disclination densityis subject to the constraint 

which follows from (8) and amounts to the conservation of the disclinicity carried by 
disclination lines. As a consequence of equation (9), the disclination lines must either 
close or terminate at external boundaries of the system. 

At a length scale long compared to the spacing between disclination lines, we can 
ignore the discrete nature of disclination lines and consider LY to be a continuous field. 
This is meaningful near the transition temperature, since the system contains a large 
number of disclination loops of arbitrary size. 

Making a Fourier transform of (8) and solving for A,,, we obtain 

W ( s )  = ( s , / q2 )Acz (q ) .  (11) 

Q .  4 2 )  = 0 (12) 

Equation (9) in Fourier space is 

which means that a(q) is transverse to q. Let us note that n; is thc density of longitudinal 
wedge disclinations, while rex and nu are the densities of twist disclinations. By equation 
(9) or (12), a has only two independent components. 

3. Hexatic N + 6 phase with continuous density of disclinations 

The full elastic energy associated with the rotation strains for a discotic liquid crystal in 
the hexatic N + 6 phase is [5] 

F = -  
2 

d3r[Kl(div6m)Z + K2(mo-rot6m)’ + K3(mo X rotbm)’ + yl(V,Q,)* 

+ Y2(ViQr)* f 2Y3(mo ’ rot 6m)(vzQz)1 (13) 

‘I 
where sl is the local rotation field defined in equation (1). 

The elasticenergy (13) in terms of the strain tensor Ay, equation (3), is 
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In the presence of disclinations, it is more suitable to express the elastic free energy as 
a functional of the strain tensorAii. In that way each component ofA,, rather than each 
component of C l  as in equation (13), can be treated as an independent fluctuating field 
variable. In fact, the singular componentsAi, of the strain tensor, equation (lo), cannot 
be represented by equation (3) everywhere. In the disclination cores cr does not vanish, 
while the representation (3) of Aji in terms of Cl components, by equation (8), would 
make cr vanishing everywhere. Therefore we have to consider A, as independent fields, 
which are not equivalent to a varying B,, since discliiation cores are lines of physical 
singularities of 8,. At the end of this section we will comment about such a choice of 
independent variables. 

For a given configuration of disclination liies,A,(r) must minimize the free energy 
(14). Exploiting the variational equation 

we obtain the equilibrium equations 

K1v~dAxx + A , )  - & 0 b ~ ~ b [ Y 3 ~ 2 r  + K2(Axy -Ayz)] f K3VzA2.3 = 0 (W 
Y 2 V ~ o A n z  + Y i V A z z  + Y3Vz(Axy -Ayx) = 0 (166) 
where is the antisymmetric unit tensor in two dimensions and a, b = x, y (sum over 
repeated indicesa, b is implied). If one takes, respectively, the curl and the divergence 
in two dimensions (xy plane) of equation (16a), one gets 

(K2v: + K3V:)E,bAab + Y~V?LA, = 0 

(K,V: + K,V:)A, = 0 
(17) 

(18) 

where we have exploited the relation ViAea = VrA, with a = x,y, which follows from 
equation (3) for the non-singular componentsA, (a  # z) of the strain tensor. Note that, 
here and in the following, the indices i, j ,  k, . . . are three-dimensional indices, while a, 
b, c, . . . are two-dimensional indices (in the wy plane). 

In Fourier space, the elastic free energy (14) is 
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By solving (20a) and (206) with respect to the singular components A., of the strain 
tensor, we get 

Equation (23) gives the twist mode of the director at equilibrium as a function of the 
singularcomponentsof thestrain tensor. Inorder toobtain A,,, which is the bendmode, 
at equilibrium, we exploit the relation q,A, = q,A,,, valid fornon-singularcomponents, 
which gives 

A 10 = -&ob(qlbqi /d (&cdA cd) (24) 

and then, byequation (23), 

Substituting equations (21), (22), (23) and (U) in equation (19) we get the free 
energy at elastic equilibrium as a functional of the two independent components A,, of 
the strain tensor, 

If the equilibrium state is characterized by a continuous density of disclinations, the 
singular components A., and A,, of the strain tensor are given in terms of 01 by equation 
(10). Taking account of the constraint (12), which allows only two independent com- 
ponents of a, and exploiting (22) ,  which comes from the equilibrium equations, we can 
solve (10) with respect to the equilibrium discliiation density: 

We have chosen CY, and a, as independent components of disclination density: a, is the 
density of longitudinal wedge disclinations while CY,, defined as 

Cl = ( l / h ) ( q x %  - WJ 

is the density of twist disclinations transverse to qr 
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Substitutingequations (27) in (26) we get the dischation free energy at equilibrium, 

Then we have to add the phenomenological core energy 

(30) 
/(2n)3[EWIazIZ d3q +ET(IaxIZ + b'y12)1 

where Ew and ETare the core energies of, respectively, a longitudinal wedge disclination 
and a twist disclination. At last we obtain the full free energy of the hexatic N + 6 phase 
permeated by an equilibrium continuous density of disclinations, 

Ftot = FD + Fare. (31) 

Fo = d3r, d3r2 at(rl)Uij(rl - rz)ai(rz) (32) 

The disclination free energy (29) can be written as 

with 

From equations (32)-(35) one can see that FD is the interaction energy between dis- 
clinations and has two separate contributions: one comes from interaction between 
longitudinal wedge disclinations and the other one comes from interaction between twist 
disclinations. Longitudinal wedge and twist disclinations are decoupled. 

The full free energy of disclinations therefore has two decoupled contributions, 

Ftot = FW + FT (36) 
where 

Fw =:/I d3r1 d3r2 ~ z ( q ) ~ z z ( r l  - ~ z ) w & z )  + /d3rE,[az(r)lz (37) 

is the contribution of longitudinal wedge disclinations, and 

FT = 11 d3r, d3rZ @a(rl)uab(rl - rdadr2) + 1 d'r E T  %(r)CU,(r) (38) 

is the contribution of twist disclinations. 
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As regards the contribution of longitudinal wedge disclinations, by carrying out the 
three-dimensional Fourier transform of UaZ(q),  equation (35u), we get 

+ d3r&[a,(r)l2 (39) I 
where ro is a disclination core radius. By equation (39), one can see that the longitudinal 
wedge disclination free energy is a three-dimensional transcription of the free energy of 
disclinations in two-dimensional melting [7]. Therefore, longitudinal wedge dis- 
clinations should drive a disclination unbinding transition [7] of Kosterlitz typc [ 10,111. 
Such a result is trustworthy, and somehow expected, since the longitudinal wedge 
disclinations are solid-like disclinations. 

However, we have to  take into account also the contribution of twist disclinations. 
In the appendix we explicitly calculate Uob(rl - r2), i.e. the interaction between twist 
disclinations, which is peculiar to our quasi-two-dimensional system. The elastic stability 
conditions [6] make thedenominator of Lkt(q), equation (356), positive definite, so that 
U&) is given by a Fourier integral which does not suffer divergences. On the other 
handthe numerator of U,,(q) isnotpositivedefinite for y: > K 2 y l ,  whichisstillconsistent 
with the above-mentioned elastic stability conditions. As a consequence, for yi > 
K ,  y ,  , twist disclinations of opposite signs can be coupled by repulsive interaction, while 
twist disclinations of the same sign can feel attractive interaction. The mechanism 
described above yields twist disclination unbinding, driven by an increasing density of 
disclinations which decorrelate the long-range sixfold orientational order, but preserve 
the nematic order. Such a twist disclination unbinding transition is peculiar to the hexatic 
N + 6 phase as a quasi-two-dimensional system. 

The twist disclination unbinding transition from the hexatic N + 6 phase to the 
nematic phase should take place for 

7: = K ~ Y I .  (40) 

In fact. the twist disclination-mediated instability of the N + 6 phase occurs for 7: > 
K 2 y , ,  while for yi < K2yl the N + 6phase isstable. On the other hand, in (61 we found 
that, near the transition between the N + 6phase and the hexagonaldiscotic phase, the 
Frank constants fulfil y $  C K 2 y , ,  i.e. a more restrictive version of elastic stability 
conditions. which prevents disclination unbinding besides fluctuation instability, There- 
fore, in this consistent scheme, the N + 6 phase takes a range of stability between the 
condensation of the hexagonal discotic phase and the disclination-mediated melting into 
the nematic phase. 

The elastic stability conditions against fluctuation-induced breakingof sixfold order 
[6] were derivedassumingthecomponentsofn to beindependent fluctuatingvariables. 
In the presence of disclinations, nevertheless, P, is not defined in the disclination cores 
so that it cannot be taken as an independent field. Thus we are forced to assume A ,  as 
independent fields, since the singular components A ,  of the strain tensor are not 
equivalent to a varying Qz in the disclination cores. The elastic free energy (14), written 
in terms of Aii as independent fields, is just positive definite for y: < Kzyl  besides K1, 
K2, K 3 ,  y ,  and y2 > 0. This inequality is more restrictive than the previously derived [6] 
ly,l< ( K z y J i D  + (K,y2)i,D,which refers tonon-singulardeformationsofik. Therefore, 
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the stability condition against disclination unbinding can be violated when the system is 
still stable as regards non-singular fluctuations of orientational order. 

The elastic equilibrium equations, e.g. equation (15), implicitly contain boundary 
conditions on the independent fields, which have to vanish at external boundaries of the 
system. For non-singular deformations, a can be taken vanishing at boundaries. In the 
presence of an isolated disclination, on the contrary, the R, increase along any loop 
around the singular core is 2n(n/6), as in equation (2) ,  so that 8, cannot be taken 
vanishing at boundaries even if the configuration is asymptotically homogeneous. There- 
fore, at external boundaries, the medium is locally, but not globally, uniform, which is 
just due to the singularity in the disclination core. On the other hand A,, given by 
ViR, outside the disclination core, vanish at boundaries and can therefore be taken as 
independent fieldsin the equilibrium equations when unbounddisclinationsare present. 

In conclusion, we have described two possible mechanisms for the disclination 
unbinding transitionofthe hexaticN + 6phaseinto the nematicphase. Thelongitudinal 
wedge disclination part of the free energy should drive a Kosterlitz transition [lo, 111, 
asin two-dimensional systems[7]. The twist disclination freeenergy shows the possibility 
of a different kind of disclination unbinding transition, peculiar to the hexatic N + 6 
phase as a quasi-two-dimensional system, due to repulsion between disclinations of 
opposite signs. 

4. Pair-interaction energy and deformations of isolated disclinations 

In thissection we will compute the deformationsofa yielded by an isolateddisclination, 
and then the pair-interaction energy between two isolated disclinations. 

The curvature strain tensor due to the presence of disclinations is a function of 
disclinatiou density. Exploiting equations (22), (23), (25) and (27) we get 

with 

(42) 2 2 2  A(q) = K3Yid + KLYzqdl + (K3Y2 + K2Yi - Y 3 ) 4 ~ 4 z .  

Equations (41a) and (416) give, respectively, the bend mode and the twist mode of the 
director, while (41c) and (41d) are the singularcomponentsof the strain tensor, i.e. the 
R, torsion modes. The splay mode of the director, by equation (Zl), vanishes in the 
presence of only twist and longitudinal wedge disclinations. 

The disclination density for an isolated longitudinal wedge disclination is 

(Y, = 27~(n/6)6(~)(r,) (Y, = ay = 0 (43) 

with rl = ( x , y ,  0). Substituting the Fourier transform of equations (43) in equations 
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(41), and carryingout the Fourier transformsof (41), the only non-vanishing components 
are 

A,(r) = -(n/6)Cy/r:) A y k )  = (n/fj)(n/r3. (44) 

The bend and twist modes of the director, which depend only on at, in addition to the 
splay mode, vanish for a longitudinal wedge disclination, so that Sm = 0. The torsion 
mode A,, vanishes as well, and then Q, dependsonly onn and y. Outside the disclination 
core, i.e. for rl # 0, A., = V,Q,. Therefore, the integration of equation (44) gives the 
deformation of Q around the singular core of a longitudinal wedge disclination 

Q Z  = (n/6) arctan(y/x) (454 

6 m = 0  (45b) 

which is just valid for rl # 0. The deformation (45) is essentially two-dimensional. 
Incidentally, equation (44) shows that A, vanish for rl  -P CO, while Q,, equation (45a), 
does not become constant for rl + m, as observed at the end of the previous section. 

An isolated twist disclination along the f axis, for example, is characterized by the 
disclination density 

a, = 2 ~ ( n / 6 ) 6 ( ~ ) ( y ,  z )  ay = a, = 0 (46) 

4 7 )  = -(2Z)2(n/6)wx) a,(q) = 0. (47) 

which in Fourier space is 

Substituting (47) in (41) we get the Fourier transformed strain tensor. As a result, 
Aiy(r) = V,6mj vanishes. Moreover, any deformation yielded by the isolated dis- 
clination does not depend on x, because of S(q,)  in equation (47). As a consequence, 
equation (21) gives Ayy(r) = Vydmj = 0. Therefore, Sm, is constant, and then can be 
taken vanishing. Furthermore the strains of Sm, arc 

A d q )  = iqzam,(d = -i(zZ)’(n/6)yzy,[q,q:/A(q)l6(q,) 

EobAob(P) = -iqy6m,(q) = i(zn)’(n/6)y*y,[q~/A(q)ld(q,) 
(48) 

and then 

The Fourier transforms of (49) and (50) can be calculated by factorizing the denomi- 
nator A(p), equation (42). as in equation (A6) of the appendix, and reducing the 
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integrand expressions into the sum of fractions whose denominators are quadratic in q1 
and qv. As a result, outside the core, i.e. for y2 + zz > r:, we get 

( ( A  + B)rZ + y2)] - ( A  + B)-@ log 
r?J 

and 

( ( A  - B)r2 t y 2  j] + (A  - B)'D(B + C - A )  log 
ra 

where ro is a core radius, while A ,  B and C are defined in equations (A7) and (A9) of 
the appendix. The integration of equation (52) gives the tor:;ion 

( A  - B ) ' ' 2 ~  
x arctan ( j]. (53) 

Equations (51) and (53) together with 6n1, = 0 represent the Cl deformations around 
a twist disclination parallel to the .? axis. From equation (51) dm, is proportional to the 
coupling constant y3, which just couples the director distortions to the Qz torsions. The 
Q, twist singularity drives, by ys coupling in equation (13) or (14), 6m distortions. As 
am, in equation (l), was assumed to he small, the result (51) is only valid for weak y3 
coupling, otherwise the logarithmic increase breaks down the perturbative approxi- 
mation. The twist disclination unbinding transition, described in the previous section, 
takes place for strong y3 coupling, so that (51) fails near such a transition. 

Finally, we calculate the pair-interaction energy between two parallel disclinations. 
For two isolated longitudinal wedge disclinations, the disclination density is 

a i ( r )  = Z~(n,/6)6(~)(r, - rll) + Z ~ ( n ~ / 6 ) 6 ( ~ ) ( r ~  - r12) 
(54) a, = ay = 0 

where n,, n2 and rll, rlZ are, respectively, the disclinicities and the positions of the two 
disclination lines. Inserting (54) in the disclination free energy (32) we obtain, besides 
the self-interaction energies, the pair-interaction energy between the two lines. The 
interaction energy for unit length between two longitudinal wedge disclinations is then 

&drl) = -'W1n2/36)~2 log(rl/rd 
where rl is the distance between the two lines. 
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Inasimilarway, theinteractionenergyforunit lengthbetweentwotwistdisclinations 
parallel, for example, to the 1 axis is 

( (A  + E';' 2 + Y ' )  

The coupling between a twist and a longitudinal wedge disclination, just discussed in the 
previous section, as well as the coupling between two orthogonal twist disclinations, 
vanishes. 
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Appendix 

The interaction between twist disclinations is given, in equation (38), in termsof Uob(r), 
which is the three-dimensional Fourier transform of 

u n h ( q )  = udq)(6eb - B l d L b )  (AI) 
where U,,(q) is given in equation (3%). Therefore 

is a symmetric tensor of rank 2, built up with the components of r, = ( x , y ,  0), so that 
we have 

u o h ( r )  = @obU(r) + ( i l o ~ l b - ~ 6 0 b ) ~ ( r )  ('43) 
with 3, = r,/r,. 

Taking the trace of (A3) we have U,(r) = U(r) and then, from (A2), 

Contraction of U,&), equation (A3). with the traceless tensor i,,Plb - 16,, gives 

and then, by (A2), 
o(.) 2 ( i l a P l b  - k 6 n b ) u o b ( r )  

In order to perform the Fourier transforms in (A4) and (A5), it is convenient to 
factorize the denominator of U,,(q) as 

2 2 2  K 3 y l q :  + K 2 Y 2 q !  + ( K 3 Y 2  + K2Yr - Y 3 ) q L q i  

= K3Yi[d + ( A  + B)q:l[q: + (A - B ) d l  (A6) 



’- 
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where 

so that U,,(g) can be written as 

- A + B - C  = 
(4: + ( A  + B)q: q: + ( A  - B)p: 

with 

c =  W Z Y l  - Y ? ) / K 3 Y l .  (A91 
Substituting (A8) in (A4) and (A5), the Fourier transforms give, respectively, 

U(r) = - [ ( A  + 5)t2 + r$]-’/2 

i B - A + C  
( A  - B)’/’ 

+ [(A - B)? + r : ] - @  

and 

B - A + C {[I + (A - B)r2/r:]’b - (A - B)’”\zl/r1}’ 
( A  - B)’/* [ ( A  - B)z2 + r$]’” 

+ 
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